SEMI-TUBULAR RIVET

Secure and uniform fastening is made without any skills.

- **Structure of semi-tubular rivet**
- **Easy fastening requiring no skill**
 A semi-tubular rivet can be easily and quickly fastened using a rivet setter without any special skills.

- **Rivet design tailored to specific purpose**
 Semi-tubular rivets can be made of various materials. They can be tailored to various requirements, such as conductivity and decorative design.

- **Stable and reliable fastening**
 A semi-tubular rivet does not loosen easily and that provides reliable fastening. The rivet installation can be checked visually.

- **Improvement in working efficiency**
 Using the rivet instead of screw, bolt or nut, the assembly efficiency can be drastically improved.

- **Operating precautions**
 If the rivet is installed in the situations below, it may result in improper fastening.
 (1) The workpieces are tilted.
 (2) There is a gap between the workpieces.
 (3) The pilot pin is not fully out, interfered by the workpieces.
 (4) The curling set is worn.

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>φ1.2</th>
<th>φ1.6</th>
<th>φ2</th>
<th>φ2.5</th>
<th>φ3</th>
<th>φ4</th>
<th>φ5</th>
<th>φ6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWCH10A</td>
<td>0.29</td>
<td>0.49</td>
<td>0.85</td>
<td>1.23</td>
<td>1.69</td>
<td>3.00</td>
<td>4.69</td>
<td>6.76</td>
</tr>
<tr>
<td>C2700W</td>
<td>0.36</td>
<td>0.65</td>
<td>0.96</td>
<td>1.50</td>
<td>2.17</td>
<td>3.86</td>
<td>6.03</td>
<td>8.68</td>
</tr>
<tr>
<td>SUS430-WR</td>
<td>0.48</td>
<td>0.81</td>
<td>1.39</td>
<td>2.03</td>
<td>2.77</td>
<td>4.93</td>
<td>7.11</td>
<td>11.40</td>
</tr>
<tr>
<td>SUSXM7-WR</td>
<td>0.51</td>
<td>0.91</td>
<td>1.42</td>
<td>2.23</td>
<td>3.21</td>
<td>5.71</td>
<td>8.93</td>
<td>12.86</td>
</tr>
<tr>
<td>C1100W</td>
<td>0.28</td>
<td>0.47</td>
<td>0.81</td>
<td>1.18</td>
<td>1.62</td>
<td>2.88</td>
<td>4.50</td>
<td>6.48</td>
</tr>
<tr>
<td>A1070W</td>
<td>0.20</td>
<td>0.37</td>
<td>0.59</td>
<td>0.90</td>
<td>1.30</td>
<td>2.32</td>
<td>3.63</td>
<td>5.29</td>
</tr>
<tr>
<td>A1200W</td>
<td>0.07</td>
<td>0.12</td>
<td>0.20</td>
<td>0.28</td>
<td>0.40</td>
<td>0.70</td>
<td>1.16</td>
<td>1.76</td>
</tr>
<tr>
<td>A5052W</td>
<td>0.10</td>
<td>0.18</td>
<td>0.27</td>
<td>0.44</td>
<td>0.60</td>
<td>1.01</td>
<td>1.61</td>
<td>2.25</td>
</tr>
<tr>
<td>A5056W</td>
<td>0.17</td>
<td>0.29</td>
<td>0.47</td>
<td>0.70</td>
<td>1.18</td>
<td>2.21</td>
<td>3.48</td>
<td>5.46</td>
</tr>
</tbody>
</table>

- **Stainless steel**
 Stainless steel wire
 SUS430-WR
 SUSXM7-WR

- **Low round Semi-tubular 3 x 5**
 - Type of head (Low round, truss, flat, countersunk and round)
 - Nominal diameter (See the specification table.)
 - Under-head shank length (See the specification table.)

- **Types of materials and relevant JIS**
 - **Materials**
 - **Description**
 - **Code**
 - **Relevant JIS**

- **Types of heads**
 - Low round
 - Truss
 - Flat
 - Countersunk
 - Round head

- **Rivet type**
 - Semi-tubular

- **Strength test results by material and shank diameter**
 - Unit (kN)
 - Nominal diameter
 - Tensile
 - Shear

- **Note** Each of the results above is the measured strength of a rivet alone.
Calculation of under-head shank length

- **Shank diameter** (d) x **Coefficient** (0.6) = **Swaging margin (K)**

 \[L = \text{Shank diameter} (d) \times \text{Coefficient} (0.6) \times \text{Material thickness} \]

 The length obtained by this calculation shall be used as a guide.

 - **Material thickness** (t)
 - **Nominal diameter** (d) = 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8

Tolerance of length L

- **Nominal diameter** (d) = 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8

 - **Tolerance** ±0.02 ±0.04 ±0.05 ±0.07 ±0.1 ±0.15 ±0.2 ±0.25 ±0.3

Length B list

- **Nominal diameter** (d) = 2.5, 3, 4, 5

 - **Length B** (in mm)
 - 3, 3.5, 4.5, 5, 5.5, 6

- **Over 4 to 10** ±0.15 ±0.2 ±0.25 ±0.3
- **Over 10 to 20** ±0.2 ±0.25 ±0.3
- **Over 20 to 40** ±0.3 ±0.4
- **Over 40** — ±0.5

<table>
<thead>
<tr>
<th>Nominal diameter (d)</th>
<th>1.2</th>
<th>1.6</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>±0.04</td>
<td>±0.05</td>
<td>±0.05</td>
<td>±0.07</td>
<td>±0.1</td>
<td>±0.15</td>
<td>±0.2</td>
<td>±0.25</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

Specification table

<table>
<thead>
<tr>
<th>Nominal diameter (d)</th>
<th>1.2</th>
<th>1.6</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length L</td>
<td>3</td>
<td>3.5</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td>±0.15</td>
<td>±0.2</td>
<td>±0.25</td>
<td>±0.3</td>
<td>±0.25</td>
<td>±0.25</td>
<td>±0.3</td>
<td>±0.25</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

Shape and symbols of standard dimensions

- **Shape and symbols of standard dimensions**

 - **Truss Semi-Tubular Rivet**
 - **Low Round Semi-Tubular Rivet**

Over 40 to 100

- **Material thickness** (t)
- **Nominal diameter** (d) = 10 to 20

 - **Tolerance** ±0.15 ±0.2 ±0.25 ±0.3

Length B list

- **Nominal diameter** (d) = 2.0, 2.4, 3.2, 4.0

 - **Length B** (in mm)
 - 2.0, 2.4, 3.2, 4.0

- **Over 4 to 10** ±0.15 ±0.15 ±0.2 ±0.25 ±0.3
- **Over 10 to 20** ±0.2 ±0.25 ±0.3
- **Over 20 to 40** ±0.3 ±0.4
- **Over 40** — ±0.5

Tolerance of length L

- **Nominal diameter** (d) = 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8

 - **Tolerance** ±0.02 ±0.05 ±0.08 ±0.1 ±0.15 ±0.2 ±0.25 ±0.3 ±0.5

Length B list

- **Nominal diameter** (d) = 2.5, 3, 4, 5, 6, 8

 - **Length B** (in mm)
 - 3, 3.5, 4.5, 5, 5.5, 6

 - **Over 4 to 10** ±0.15 ±0.1 ±0.2 ±0.25 ±0.3 ±0.25 ±0.3 ±0.4
 - **Over 10 to 20** ±0.2 ±0.25 ±0.3 ±0.4
 - **Over 10 to 20** ±0.3 ±0.4
 - **Over 40** — ±0.5

Tolerance of length L

- **Nominal diameter** (d) = 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8

 - **Tolerance** ±0.02 ±0.05 ±0.1 ±0.15 ±0.2 ±0.25 ±0.3 ±0.4 ±0.5

Length B list

- **Nominal diameter** (d) = 2.0, 2.4, 3.2, 4.0

 - **Length B** (in mm)
 - 3, 3.5, 4.5, 5, 5.5, 6

 - **Over 4 to 10** ±0.15 ±0.1 ±0.2 ±0.25 ±0.3 ±0.25 ±0.3 ±0.4 ±0.5
 - **Over 10 to 20** ±0.2 ±0.25 ±0.3 ±0.4 ±0.5
 - **Over 20 to 40** ±0.3 ±0.4 ±0.5
 - **Over 40** — ±0.5
Flat Semi-Tubular Rivet

Calculation of under-head shank length

\[
L = \text{Diameter} \times \text{Coefficient} \times (0.6) \times \text{Material thickness (t)}
\]

- If length \(L\) is close to the minimum or maximum, length \(B\) shall be 0.8 \times d. For details, see the length \(B\) list below.

Specification table

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Unit (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

- Max: 0.3
- Min: 0.2
- Recommended work hole diameter: 8.5

Tolerance of length \(L\)

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Unit (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) or below</td>
<td>± 0.5</td>
</tr>
<tr>
<td>Over 2.5 to 4</td>
<td>± 0.4</td>
</tr>
<tr>
<td>Over 4 to 10</td>
<td>± 0.3</td>
</tr>
<tr>
<td>Over 10 to 20</td>
<td>± 0.25</td>
</tr>
<tr>
<td>Over 20 to 40</td>
<td>± 0.2</td>
</tr>
<tr>
<td>Over 40</td>
<td>± 0.15</td>
</tr>
</tbody>
</table>

Length \(B\) list

<table>
<thead>
<tr>
<th>Length (B)</th>
<th>Unit (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>3.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Countersunk Semi-Tubular Rivet

Calculation of under-head shank length

\[
L = \text{Diameter} \times \text{Coefficient} \times (0.5) \times \text{Material thickness (t)}
\]

- When length \(L\) is close to the minimum or maximum, length \(B\) shall be 0.8 \times d. For details, see the length \(B\) list below.

Specification table

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Unit (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

- Max: 0.3
- Min: 0.2
- Recommended work hole diameter: 8.5

Tolerance of length \(L\)

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Unit (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) or below</td>
<td>± 0.15</td>
</tr>
<tr>
<td>Over 2.5 to 4</td>
<td>± 0.2</td>
</tr>
<tr>
<td>Over 4 to 10</td>
<td>± 0.15</td>
</tr>
<tr>
<td>Over 10 to 20</td>
<td>± 0.25</td>
</tr>
<tr>
<td>Over 20 to 40</td>
<td>± 0.3</td>
</tr>
<tr>
<td>Over 40</td>
<td>± 0.5</td>
</tr>
</tbody>
</table>
Round Semi-Tubular Rivet

Shape and symbols of standard dimensions

Calculation of under-head shank length

Nominal diameter 1.2 1.6 2 2.5 3 4 5 6 8

Tolerance
Standard

D

H

A

Tolerance

B

L

Tolerance

Unit (mm)

Material thickness t

Swaging margin K

Shank diameter d

Coefficient (0.6) Material thickness t

L = Shank diameter d / Coefficient (0.6) Material thickness t

*1. Shank diameter d = 0.6 x swaging margin K

*2. Use coefficient (0.5) as a guide for SUSXM7 (with hole diameter / depth between 0.75 d and 0.77 d)

*3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless steel, less than twice.

The length obtained by this calculation shall be used as a guide.

Speciﬁcation table

Shape and symbols of standard dimensions

Shank diameter d

Coefficient (0.6)

Material thickness t

Swaging margin K

L = Shank diameter d / Coefficient (0.6) Material thickness t

*1. Shank diameter d = 0.6 x swaging margin K

*2. Use coefficient (0.5) as a guide for SUSXM7 (with hole diameter / depth between 0.75 d and 0.77 d)

*3. The under-head shank length L should be less than 5 times the shank diameter or in the case of stainless steel, less than twice.

The length obtained by this calculation shall be used as a guide.

Examples of customized rivets

Shoulder rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Uses: Glass louvers, bars and handles

Anti-crack rivet

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Expansion rivet

Features: The rivet shank is expanded to ensure alignment of the materials. The dual curls fasten the materials firmly. The curls won’t crack.

Uses: Hole punches

Highly corrosion resistant rivet

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Double head rivet

Features: Two different types of rivets are combined into a double head rivet.

Uses: Wheeled suitcases (handles) and kitchen knife handles

Tapered semi-tubular rivet

Features: The rivet is more resistant to buckling than ordinary rivets. It is suitable for fastening a long semi-tubular rivet.

Uses: Automobile-related products and can lever fittings

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Elements of customized rivets

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.

Semi-tubular rivet

Features: The rivet height, after fastened, is constant. It can be used as a fulcrum pin or a spring catch.

Features: Heat treatment is performed to prevent cracks in curls.

Uses: Glass louvers, bars and handles

Features: The rivet is highly resistant to corrosion by seawater or chemicals (sulfuric acid and organic acid).

Uses: Marine products and products designed for outdoor use

Examples of customized rivets

In addition to the standard products, we tailor rivets to specific customer needs. Please don’t hesitate to ask us.